Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Protein Cell ; 2023 Feb 06.
Article in English | MEDLINE | ID: covidwho-2286280

ABSTRACT

Although the development of COVID-19 vaccines has been a remarkable success, the heterogeneous individual antibody generation and decline over time are unknown and still hard to predict. In this study, blood samples were collected from 163 participants who next received two doses of an inactivated COVID-19 vaccine (CoronaVac®) at a 28-day interval. Using TMT-based proteomics, we identified 1,715 serum and 7,342 peripheral blood mononuclear cells (PBMCs) proteins. We proposed two sets of potential biomarkers (seven from serum, five from PBMCs) at baseline using machine learning, and predicted the individual seropositivity 57 days after vaccination (AUC = 0.87). Based on the four PBMC's potential biomarkers, we predicted the antibody persistence until 180 days after vaccination (AUC = 0.79). Our data highlighted characteristic hematological host responses, including altered lymphocyte migration regulation, neutrophil degranulation, and humoral immune response. This study proposed potential blood-derived protein biomarkers before vaccination for predicting heterogeneous antibody generation and decline after COVID-19 vaccination, shedding light on immunization mechanisms and individual booster shot planning.

2.
Medicina (Kaunas) ; 59(3)2023 Mar 05.
Article in English | MEDLINE | ID: covidwho-2277348

ABSTRACT

The immune response elicited by the current COVID-19 vaccinations declines with time, especially among the immunocompromised population. Furthermore, the emergence of novel SARS-CoV-2 variants, particularly the Omicron variant, has raised serious concerns about the efficacy of currently available vaccines in protecting the most vulnerable people. Several studies have reported that vaccinated people get breakthrough infections amid COVID-19 cases. So far, five variants of concern (VOCs) have been reported, resulting in successive waves of infection. These variants have shown a variable amount of resistance towards the neutralising antibodies (nAbs) elicited either through natural infection or the vaccination. The spike (S) protein, membrane (M) protein, and envelope (E) protein on the viral surface envelope and the N-nucleocapsid protein in the core of the ribonucleoprotein are the major structural vaccine target proteins against COVID-19. Among these targets, S Protein has been extensively exploited to generate effective vaccines against COVID-19. Hence, amid the emergence of novel variants of SARS-CoV-2, we have discussed their impact on currently available vaccines. We have also discussed the potential roles of S Protein in the development of novel vaccination approaches to contain the negative consequences of the variants' emergence and acquisition of mutations in the S Protein of SARS-CoV-2. Moreover, the implications of SARS-CoV-2's structural proteins were also discussed in terms of their variable potential to elicit an effective amount of immune response.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Breakthrough Infections , Antibodies, Viral
3.
Front Immunol ; 13: 1074077, 2022.
Article in English | MEDLINE | ID: covidwho-2198913

ABSTRACT

Introduction: An approach toward novel neutralizing IgY polyclonal antibodies (N-IgY-pAb) against SARS-CoV-2 S-ECD was developed. Material and methods: The novel N-IgY-pAb and its intranasal spray response against the wild type ("'WH-Human 1") SARS-CoV-2 virus, variants of Delta or Omicron were up to 98%. Unique virus peptides binding to N-IgY-pAb were screened by a SARS-CoV-2 proteome microarray. Results: Seventeen mutation-free peptides with a Z-score > 3.0 were identified as potent targets from a total of 966 peptides. The new findings show that one is in the RBM domain (461LKPFERDISTEIYQA475 ), two are in the NTD domain (21RTQLPPAYTNSFTRG35, 291CALDPLSETKCTLKS305) four are in the C1/2-terminal (561PFQQFGRDIADTTDA575,571DTTDAVRDPQTLEIL585,581TLEILDITPCSFGGV595, 661ECDIPIGAGICASYQ675 ), three are in the S1/S2 border (741YICGDSTECSNLLLQ755, 811KPSKRSFIEDLLFNK825, 821LLFNKVTLADAGFIK835) one target is in HR2 (1161SPDVDLGDISGINAS1175) and one is in HR2-TM (1201QELGKYEQYIKWPWY1215). Moreover, five potential peptides were in the NSP domain: nsp3-55 (1361SNEKQEILGTVSWNL1375), nsp14-50 (614HHANEYRLYLDAYNM642, ORF10-3 (21MNSRNYIAQVDVVNFNLT38, ORF7a-1(1MKIILFLALITLATC15) and ORF7a-12 (1116TLCFTLKRKTE121). Discussion and conclusion: We concluded that the N-IgY-pAb could effectively neutralize the SARS-CoV-2. The new findings of seventeen potent conserved peptides are extremely important for developing new vaccines and "cocktails" of neutralizing Abs for efficient treatments for patients infected with SARS-CoV-2.


Subject(s)
COVID-19 , Humans , Animals , Chickens , Proteome , SARS-CoV-2 , Antibodies, Neutralizing , Peptides
4.
Talanta ; 255: 124200, 2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2165885

ABSTRACT

Vaccination is an effective strategy to fight COVID-19. However, the effectiveness of the vaccine varies among different populations in varying immune effects. Neutralizing antibody (NAb) level is an important indicator to evaluate the protective effect of immune response after vaccination. Lateral flow immunoassay (LFIA) is a rapid, safe and sensitivity detection method, which has great potential in the detection of SARS-CoV-2 NAb. In this study, a fluorescent beads-based lateral flow immunoassay (FBs-LFIA) and a latex beads-based LFIA (LBs-LFIA) using double antigen sandwich (DAS) strategy were established to detect NAbs in the serum of vaccinated people. The limit of detection (LoD) of the FBs-LFIA was 1.13 ng mL- 1 and the LBs-LFIA was 7.11 ng mL- 1. The two LFIAs were no cross-reactive with sera infected by other pathogenic bacteria. Furthermore, the two LFIAs showed a good performance in testing clinical samples. The sensitivity of FBs-LFIA and LBs-LFIA were 97.44% (95%CI: 93.15%-99.18%) and 98.29% (95%CI: 95.84%-99.37%), and the specificity were 98.28% (95%CI: 95.37%-99.45%) and 97.70% (95%CI: 94.82%-99.06%) compared with the conventional virus neutralization test (cVNT), respectively. Notably, the LBs-LFIA was also suitable for whole blood sample, requiring only 3 µL of whole blood, which provided the possibility to detect NAbs at home. To sum up, the two LFIAs based on double antigen sandwich established by us can rapidly, safely, sensitively and accurately detect SARS-CoV-2 NAb in human serum.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Neutralization Tests , Immunoassay/methods , Antibodies, Viral , Antigens , Antibodies, Neutralizing
5.
Viruses ; 14(11)2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2116166

ABSTRACT

The world is now apparently at the last/recovery stage of the COVID-19 pandemic, starting from 29 December 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the progression of time, several mutations have taken place in the original SARS-CoV-2 Wuhan strain, which have generated variants of concern (VOC). Therefore, combatting COVID-19 has required the development of COVID-19 vaccines using several platforms. The immunity induced by those vaccines is vital to study in order to assure total protection against SARS-CoV-2 and its emerging variants. Indeed, understanding and identifying COVID-19 protection mechanisms or the host immune responses are of significance in terms of designing both new and repurposed drugs as well as the development of novel vaccines with few to no side effects. Detecting the immune mechanisms for host protection against SARS-CoV-2 and its variants is crucial for the development of novel COVID-19 vaccines as well as to monitor the effectiveness of the currently used vaccines worldwide. Immune memory in terms of the production of neutralizing antibodies (NAbs) during reinfection is also very crucial to formulate the vaccine administration schedule/vaccine doses. The response of antigen-specific antibodies and NAbs as well as T cell responses, along with the protective cytokine production and the innate immunity generated upon COVID-19 vaccination, are discussed in the current review in comparison to the features of naturally induced protective immunity.


Subject(s)
COVID-19 , Viral Vaccines , Humans , COVID-19 Vaccines , SARS-CoV-2/genetics , COVID-19/prevention & control , Pandemics/prevention & control
6.
Pakistan Armed Forces Medical Journal ; 71(6):2024-2028, 2021.
Article in English | Scopus | ID: covidwho-1841854

ABSTRACT

Objective: To ascertain the immunogenicity and short-term safety of inactivated SARS-CoV-2 Vaccine (Vero Cell), BBIBP-CorV (Sinopharm) in our setup. Study Design: Cross-sectional study. Place and Duration of Study: Combined Military Hospital Sialkot Pakistan, from Feb to Apr 2021. Methodology: A total of 227 health care workers (HCWs) between 18 to 59 years of age were included in the study. Two doses of Inactivated SARS-CoV-2 Vaccine (Vero Cell), BBIBP-CorV were administered to all individuals 21 days apart and they were monitored for any vaccine-related adverse reactions for 7 days after each dose. Neutralizing antibodies (NAbs) in study subjects were detected in three samples i.e. before 1st dose of vaccine, 21 days after 1st dose and 14 days after 2nd dose by Elecsys Anti- SARS-CoV-2 S (Roche Diagnostics). Results: Mean age of individuals in the study was 36.70 ± 18.08 years and most individuals were in the 31-45 years age group. Fatigue and drowsiness were the most common adverse effects experienced by study subjects after 1st and 2nd dose of the vaccine followed by malaise and headache. Only 42 (39%) individuals developed positive neutralizing antibody titers in a sample taken 21 days after 1st dose while all individuals except one (99%) developed positive neutralizing antibody titers in a sample taken 2 weeks after 2nd vaccine dose. Conclusion: Inactivated SARS-CoV-2 Vaccine (Vero Cell), BBIBP-CorV is safe and well-tolerated with very few adverse reactions. Immunogenicity was well achieved as the seroconversion rate was 99% two weeks after 2nd dose of the vaccine. © 2021, Army Medical College. All rights reserved.

7.
Cells ; 11(7)2022 04 06.
Article in English | MEDLINE | ID: covidwho-1776140

ABSTRACT

Vaccination is currently the most effective strategy for the mitigation of the COVID-19 pandemic. mRNA vaccines trigger the immune system to produce neutralizing antibodies (NAbs) against SARS-CoV-2 spike proteins. However, the underlying molecular processes affecting immune response after vaccination remain poorly understood, while there is significant heterogeneity in the immune response among individuals. Metabolomics have often been used to provide a deeper understanding of immune cell responses, but in the context of COVID-19 vaccination such data are scarce. Mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR)-based metabolomics were used to provide insights based on the baseline metabolic profile and metabolic alterations induced after mRNA vaccination in paired blood plasma samples collected and analysed before the first and second vaccination and at 3 months post first dose. Based on the level of NAbs just before the second dose, two groups, "low" and "high" responders, were defined. Distinct plasma metabolic profiles were observed in relation to the level of immune response, highlighting the role of amino acid metabolism and the lipid profile as predictive markers of response to vaccination. Furthermore, levels of plasma ceramides along with certain amino acids could emerge as predictive biomarkers of response and severity of inflammation.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , Biomarkers , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunity , Metabolomics , Pandemics , Plasma , SARS-CoV-2 , Vaccination
8.
Pathogens ; 11(2)2022 Jan 27.
Article in English | MEDLINE | ID: covidwho-1677702

ABSTRACT

Assessing the duration of neutralizing antibodies (nAbs) following SARS-CoV-2 infection or vaccination is critical to evaluate the protective immunity and formulate public health strategies. In this study, SARS-CoV-2 Ab ELISA (enzyme-linked immunosorbent assay), chemiluminescent microparticle immunoassay (CMIA), as well as pseudovirus neutralization test (PVNT) were performed in two cohorts, convalescent patients (CP) from coronavirus disease 2019 (COVID-19) and BBIBP-CorV vaccinated population. It was found that nAbs and binding antibodies emerged at 14 days post the 1st dose of vaccination, reached peaks at 28 days after 2nd dose vaccination and then gradually declined over time. CP-6M (convalescent patients up to 6 months) from COVID-19 presented stronger nAbs or binding antibodies responses than vaccinees 90 days or 180 days after 2nd dose vaccination. CMIA or SARS-CoV-2 Ab ELISA correlated well with PVNT with high consistency in the two cohorts. It shown that nAbs and binding antibodies can keep 6 months both in CP and vaccinees. Most importantly, our data show the application of using CMIA and SARS-CoV-2 Ab ELISA as rapid screening tests for nAb titer and could be used as alternative strategies for quickly evaluating SARS-CoV-2 nAbs responses in vaccine research.

9.
J Dev Biol ; 9(4)2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1572537

ABSTRACT

A novel coronavirus (SARS-CoV-2) emerged towards the end of 2019 that caused a severe respiratory disease in humans called COVID-19. It led to a pandemic with a high rate of morbidity and mortality that is ongoing and threatening humankind. Most of the mutations occurring in SARS-CoV-2 are synonymous or deleterious, but a few of them produce improved viral functions. The first known mutation associated with higher transmissibility, D614G, was detected in early 2020. Since then, the virus has evolved; new mutations have occurred, and many variants have been described. Depending on the genes affected and the location of the mutations, they could provide altered infectivity, transmissibility, or immune escape. To date, mutations that cause variations in the SARS-CoV-2 spike protein have been among the most studied because of the protein's role in the initial virus-cell contact and because it is the most variable region in the virus genome. Some concerning mutations associated with an impact on viral fitness have been described in the Spike protein, such as D614G, N501Y, E484K, K417N/T, L452R, and P681R, among others. To understand the impact of the infectivity and antigenicity of the virus, the mutation landscape of SARS-CoV-2 has been under constant global scrutiny. The virus variants are defined according to their origin, their genetic profile (some characteristic mutations prevalent in the lineage), and the severity of the disease they produce, which determines the level of concern. If they increase fitness, new variants can outcompete others in the population. The Alpha variant was more transmissible than previous versions and quickly spread globally. The Beta and Gamma variants accumulated mutations that partially escape the immune defenses and affect the effectiveness of vaccines. Nowadays, the Delta variant, identified around March 2021, has spread and displaced the other variants, becoming the most concerning of all lineages that have emerged. The Delta variant has a particular genetic profile, bearing unique mutations, such as T478K in the spike protein and M203R in the nucleocapsid. This review summarizes the current knowledge of the different mutations that have appeared in SARS-CoV-2, mainly on the spike protein. It analyzes their impact on the protein function and, subsequently, on the level of concern of different variants and their importance in the ongoing pandemic.

10.
Hum Vaccin Immunother ; 18(2): 2006026, 2022 04 29.
Article in English | MEDLINE | ID: covidwho-1565876

ABSTRACT

Convalescent plasma therapy provides a useful therapeutic tool to treat infectious diseases, especially where no specific therapeutic strategies have been identified. The ongoing pandemic puts back the spotlight on this age-old method as a viable treatment option. In this review, we discuss the usage of this therapy in different diseases including COVID-19, and the possible mechanisms of action. The current review also discusses the progress of therapeutic applications of blood-derivatives, from the simple transfer of immunized animal sera, to the more target-specific intravenous administration of human immunoglobulins from a pool of convalescent individuals, in both infectious and non-infectious diseases of various etiologies.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral , COVID-19/therapy , Immunization, Passive , Pandemics/prevention & control , COVID-19 Serotherapy
11.
Front Immunol ; 12: 741796, 2021.
Article in English | MEDLINE | ID: covidwho-1477826

ABSTRACT

Background: The immune response plays a pivotal role in dictating the clinical outcome in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected adults, but it is still poorly investigated in the pediatric population. Methods: Of 209 enrolled subjects, 155 patients were confirmed by PCR and/or serology as having coronavirus disease 2019 (COVID-19). Blood samples were obtained at a median of 2.8 (interquartile, 2.1-3.7) and 6.1 (5.3-7.2) months after baseline (symptom onset and/or first positive virus detection). The immune profiles of activation, senescence, exhaustion, and regulatory cells were analyzed by flow cytometry. Neutralizing antibodies (nAbs) were detected by a plaque reduction neutralization test. In available nasopharyngeal swabs at baseline, SARS-CoV-2 levels were quantified by digital droplet PCR (ddPCR). Results: Overall, COVID-19 patients had higher levels of immune activation, exhaustion, and regulatory cells compared to non-COVID-19 subjects. Within the COVID-19 group, activated and senescent cells were higher in adults than in children and inversely correlated with the nAbs levels. Conversely, Tregs and Bregs regulatory cells were higher in COVID-19 children compared to adults and positively correlated with nAbs. Higher immune activation still persisted in adults after 6 months of infection, while children maintained higher levels of regulatory cells. SARS-CoV-2 levels did not differ among age classes. Conclusions: Adults displayed higher immune activation and lower production of anti-SARS-CoV-2 nAbs than children. The different immune response was not related to different viral load. The higher expression of regulatory cells in children may contribute to reduce the immune activation, thus leading to a greater specific response against the virus.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Asymptomatic Infections , B-Lymphocytes, Regulatory/immunology , COVID-19/pathology , T-Lymphocytes, Regulatory/immunology , Adult , Child , Child, Preschool , Cytokines/blood , Female , Humans , Lymphocyte Count , Male , Middle Aged , Pathogen-Associated Molecular Pattern Molecules/blood , Prospective Studies , SARS-CoV-2/immunology , Severity of Illness Index , Viral Load/immunology
SELECTION OF CITATIONS
SEARCH DETAIL